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Exercise 1. Show that up to isomorphism there are exactly four groups of order 28. [Hint:
Use Sylow’s Theorem and semi-direct products.]

Proof. Let G be a group of order 28 = 22-7. By Sylow’s Theorem (3), the number of Sylow
7-subgroups of G, ny, is congruent to 1 modulo 7, and so this number belongs to the set
{1,8,15,...}. Also by Sylow’s Theorem (3), this number properly divides 22 = 4, and hence
belongs to the set {1,2,4}. The only number that satisfies this property is 1, so G has
a unique Sylow 7-subgroup H. By Sylow’s Theorem (2), this implies that H is a normal
subgroup of G.

By Sylow’s Theorem (1), G has a Sylow 2-subgroup, K, and thus K has order 4. Now
we claim that H N K = {e}: if a € H N K, then, by Lagrange’s Theorem, the order of a
properly divides the order of H (as a is an element of H) and the order of a properly divides
the order of K. Since the order of H is 7 and the order of K is 4, and since the only positive
number that is a proper divisor of both 7 and 4 is 1, this implies that the order of a is 1,
hence a is the identity element. Thus G is the semidirect product of H and K by Theorem
12 in Section 5.5.

Since H has prime order, it is cyclic by Cauchy’s Theorem. By Proposition 16 in Section
4.4, then, the automorphism group of H is isomorphic to Z5 . Note then that Z5 is a cyclic
group of order 6: (3) = {3,32,3%,3%,3%, 35} = {3,2,6,4,5,1} where this multiplication is
done modulo 7. Therefore the automorphism group of H is isomorphic to Zg, that is, there
is some isomorphism f from Zg into Aut(H). So we consider homomorphisms from K into
Zg. Since K has order 4, and since every group of order 4 is either isomorphic to Z4 or
Zo X 7o, we can consider two cases:

1. K is isomorphic to Zs X Zs. Then K has 3 nonidentity elements of order 2, a, b, and
¢, and it is generated by any pair of these elements. Let ¢ be any homomorphism
from K into Zg. Since the orders of ¢(a), ¢(b), and ¢(a)p(b) = ¢(ab) = ¢(c) divide
the orders of a, b, and c respectively, and since the divisors of 2 are 1 and 2, we can
consider 2 subcases:

(a) The images of two nonidentity elements of K have order 1. Without loss of gen-
erality, suppose p(a) and (b) have order 1. Then,, since K = (a,b), ¢ : K — Zg
is the trivial homomorphism, and hence f o : K — Aut(H) is also the trivial
homomorphism. This yields G = H X o, K = H X K = 7y X Zig X Lig = Zip X L4

(b) The images of two nonidentity elements of K have order 2. Without loss of gen-
erality, suppose ¢(a) and ¢(b) have order 2. Because 3 is the unique element of
Ze with order 2, this implies that f o ¢(a) = f o ¢(b) is the unique element of
Aut(H) that has order 2, namely the inversion map. Thus, in particular, f oy is
not the trivial homomorphism from K into Aut(H). By part (3) of Proposition
11 in Section 5.5, then, K is not a normal subgroup of G = H X ., K, and so G
is non-abelian.

Now we show that G has no elements of order 4. Suppose that (h, k) is an element
of G such that (h,k)* = eg. Then note that k? = e as every element of K has
order 1 or 2. So

[(h, k) (R, K)][(R, k) (h, k)] = (B~ f o p(k)(h), k) (R f o (k) (R), k?)
= (h-fop(k)(h),ex)(h- fop(k)(h) ex)
= (h-fop(k)(h) - foplex)(h- fopk)(h)),ex)
= (h-fop(k)(h)-h- fop(k)(h) ex)
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Now, if kK = a or k = b, then f o p(k)(h) = h™!. In this case, (h,k)?> = (h -
h=1 k%) = (em,ex) (as a® = b* = ek), and so (h,k) has order 1 or 2. In
particular, then, (h, k) does not have order 4. If, instead, k = ex or k = ab = ¢,
then fo(k) has order one by the construction above, and hence fop(k)(h) = h.
In this case, (h,k)* = (h* k*). So, if (h,k)* = eq, then in particular h* = ey.
By Lagrange’s Theorem, the order of h therefore divides 4 and 7, and thus h has
order 1, and therefore h = eg. In this case, again, (h, k)? = (em, k?) = (eq, ex)
as €% = ¢ = ex. This implies that (h, k) has order 1 or 2, and so in particular
(h, k) does not have order 4. This therefore proves that no element of G has order
4.

2. K is isomorphic to Z4. Then K is cyclic and generated by an element k € K. Let ¢
be any homomorphism from K into Zg. Since the order of (k) divides the order of k,
which is 4, ¢(k) must be an element of Zg with order 1, 2, or 4. Because Zg contains
no elements of order 4, p(k) has order 1 or 2. We consider now these two subcases:

(a)

(b)

(k) has order 1. Then, because k is a generator of K, ¢(K) = 0 and so ¢ is the
trivial homomorphism. This yields the trivial homomorphism f o ¢ from K into
Aut(H), in which case G = H X0, K = H x K = Zog.

(k) has order 2. In this case, fo is a homomorphism from K into Aut(H) that
maps k to the unique element of Aut(H) with order 2, namely the inversion map.
In particular, then, f o is not the trivial homomorphism from K into Aut(H).
By part (3) of Proposition 11 in Section 5.5, then, K is not a normal subgroup
of G = H X0, K, and so G is non-abelian. Furthermore, consider the element
(6[-[, k) in G:

(em, k)" = [(em, k) (em, K))[(em, k) (e, k)]
= (en fop(k)(en),k*)(enf o p(k)(en), k?)
= (em, k) (e, k?)
= (err fop(k?)(en), k")
= (en, k%)
eH,eK)

€G,-

Thus, since k? # ex, (exq, k) has order 4.

The above shows that there are at most 4 groups of order 28. Furthermore, we have that

1.

3.

The two abelian groups are nonisomorphic as Zsg has an element of order 28 while
Zo X Z14 does not.

The two non-abelian groups are nonisomorphic as GG; has no elements of order 4 while
G5 has an element of order 4.

No abelian group is isomorphic to a non-abelian group.

Therefore the 4 groups constructed are distinct. We conclude that there are, up to isomor-
phism, exactly 4 groups of order 28. O
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Exercise 2 (Dummit and Foote p. 184 #6). Assume that K is a cyclic group, H is an
arbitrary group and ¢; and @2 are homomorphisms from K into Aut(H) such that ¢1(K)
and @9(K) are conjugate subgroups of Aut(H). If K is infinite assume ¢; and ¢y are
injective. Prove by constructing an explicit isomorphism that H x,, K = H x,, K (in
particular, if the subgroups ¢1(K) and @2(K) are equal in Aut(H), then the resulting
semidirect products are isomorphic). [Suppose o1 (K)o~t = p(K) so that for some a € Z
we have o (k)o™! = po(k)® for all k € K. Show that the map ¢ : H x,, K = H x,, K
defined by ¥ ((h,k)) = (o(h), k%) is a homomorphism. Show ¢ is bijective by constructing
a 2-sided inverse.]

Proof. If ¢1(K) and po(K) are conjugate subgroups of Aut(H), then there exists an ele-
ment o of Aut(H) such that op; (K)o~ = p(K). Since K is cyclic, it is generated by
some element k. Then oy;(k)o™! € po(K), so there is some element ¢ € K such that
op1(k)o~t = p2(q). But, because k generates K, ¢ = k% for some integer a. We now make
and prove a subclaim.

Subclaim 2.1.

For all g € K, op1(g9)o™" = pa2(9)*.

Proof of subclaim 2.1.

Let ¢ € K be given arbitrarily. Then, because k generates K, g = k™ for some
integer n. Thus

opi(g)o! = o1 (k™)

=op1(k)*o
= (op1(k)a™ )"
= 2 (k)"

= 2 (k")*
= pa2(9)".

1 as ¢, is a homomorphism

as 9 is a homomorphism

Since this is true for an arbitrary element of K, it is true for all elements of K,
proving the result. O

We use this fact to motivate the construction of the following function, which we will
then show to be an isomorphism.

Definition.

Define ¢ : H x4, K — H X, K as ¢((h, k) = (o(h), k*).

We will make a series of subclaims showing that ¢ is an isomorphism.

Subclaim 2.2.

1) is a homomorphism.
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Proof of subclaim 2.2.

Let (hi1, k1), (ho, k2) be arbitrary elements of H x,, K. Then

Y ((ha, k1) (has k) = ¥ ((hy - @1(k1)(h2), kiks))
(U(hl ~p1(k1)(h2)), (klkz)a>

o(h1) - (00 @1(k1))(ha), (k‘1k‘2)a> as o is a homomorphism

g

(
(
(v
(

(

1) - (902(]f1)a0) (ha), (klk‘g)“) by claim above

1) f)((f(hz)), (kle)a) as o is a homomorphism
) 1)

(
(
( 2(k
(h1) - pa(kf

h
h
h

o (a(hg)),kfk;) as K is abelian

(o(m). k) (o(ha). k3
= P((h1, k1)) v ((h2, k2)).

Thus 7 is a homomorphism, proving subclaim 2.2. O

We now venture to prove that v is invertible, which will require several intermediate
results.

Subclaim 2.3.

Suppose m and /¢ are integers with ¢ | m. Then the function f : Z), — Z; which
maps every element of Z, to its remainder after division by ¢ is surjective.

Proof of subclaim 2.3.

Let © € Z; be given arbitrarily, and let pq,po,...,p, be the primes dividing m but
not x. Then define .
V= Hp7
i=1

We will show that ged(x + v, m) = 1. Suppose p is a prime dividing m, and consider
two cases:

(i) p divides . Then, by construction, p ¢ {p; : i € {1,2,...,n}}. Thus implies
that p does not divide v. Additionally, since p divides = and ged(z,¢) =1 (as
x € Z)), this implies that p does not divide £. So p divides = but not v¢, and
hence p does not divide = + v/.

(ii) p does not divide x. Then, by construction, p divides v. So p divides v¢ but
not z, and hence p does not divide = + v/.

In both cases above, p does not divide = + v¢, and therefore every prime dividing m
does not divide x + v¢, showing that ged(x 4+ vf,m) = 1. Therefore x +vf € Z,, and
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x4+ vl =2z (mod £), so f(x + vf) = . Since this is true for an arbitrary element of

7}, it is true for every element of Z,, and hence f is surjective, proving subclaim

2.3. O

We use this result to prove the next subclaim.

Subclaim 2.4.

Suppose K has finite order m. Then there exists an integer b such that ab = 1
(mod m).

Proof of subclaim 2.4.

Let £ = |p2(K)|, and recall several facts:
1. K is generated by k.

2. Homomorphisms map generators to generators of the image: if G is a group
generated by g, and if ( : G; — G2 is a homomorphism, then ((G;) is generated
by ((g) (see Theorem 4 in Section 2.3).

3. The map defined by conjugation by o—i.e., v, : Aut(H) — Aut(H)—is a
homomorphism.

4. Powers of a generator of a group are themselves generators if and only if the
power is relatively prime to the order of the group: if G is a finite group gen-
erated by g, then g generates G if and only if ged(a, |G|) = 1 (see Proposition
6 in Section 2.3).

Then, we make several observations:

1. Facts 1-3 imply that oo(K) is generated by both oo(k) and o (k)o~! =
wg(k‘)a.

2. Fact 4 implies that ged(a, ) = 1, and hence a € Z, . So, by subclaim 2.3, there
exists an integer v such that ¢ = a + v¢ is an element of Z.

3. By Lagrange’s Theorem, @3 (k)" = eaus(m)-

The above observations reveal that

)
)C(C/92(/9)€)7U

k) - exnecmn
)

Thus ged(a,m) = ged(c, m) = 1, where this final equality holds from the fact that

c € ZY,. This implies that a € Z),, and so there exists an element b € Z, such that
ab =1 (mod m), proving subclaim 2.4. O
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We can use subclaim 2.4 to finish our proof.

Subclaim 2.5.

1) is invertible.

Proof of subclaim 2.5.

Suppose first that K is finite with order m. Then, by subclaim 2.4, there exists an
integer b such that ab =1 (mod m). In this case define { : H x,, K — H x,, K by
&((h,k)) = (671(h), k?). Then, for all (h,k) € H x K,

Yo &((hk)) =v((0(h), k"))

= (h7 k)
= (o7 (a(R)), (k")")
=¢((o(h), k"))
= &otp((h,K)).
Thus ¥ 0 £ = £ o9 =id, and thus ¥ is invertible.
Now suppose that K is infinite, and that, as suggested in the problem statement,
1 and @y are injective. Then, because K is an infinite cyclic group, K & Z, and

so ¢1(K) = ¢o(K) = Z as injective homomorphisms are isomorphisms onto their
range. In this case, we make several notes:

1. k generates K.
2. Isomorphisms map generators to generators.
3. The only generators of Z are 1 and its inverse —1.

The above notes imply that, since op;(k)o~! = ¢a(k)*, a = 1 or a = —1. Then
calculations similar to those in the finite case show that § : H x,, K — H x4, K
given by £((h, k)) = (071 (h), k") is an inverse for 1. O

Combining subclaims 2.2 and 2.5, v is an invertible homomorphism from H x,, K into
H %, K, and thus these groups are isomorphic, proving the result. O
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Exercise 3 (Dummit and Foote p. 186 #18). Show that if H is any group then there is
a group G that contains H as a normal subgroup with the property that for every auto-
morphism ¢ of H there is an element g € G such that conjugation by g when restricted
to H is the given automorphism o, i.e., every automorphism of H is obtained as an inner
automorphism of G restricted to H.

Proof. Let G = Hol(H) = H xiq Aut(H). Then H = {(h,eau(s)) : h € H} < G by part
(3) of Theorem 10 in Section 5.5. Furthermore, if o is an automorphism of H, then let
g = (emr,0). Then, for all h € H,

g(h;eautm)g " = (e, o) (h, eanm))(em, o)
€H, U)(h 071 "CH, eAut(H)o'il)
H, U) (h’ 0_1)

~ Y~ o~~~
8]

Thus conjugation by g when restricted to H is the automorphism o. O
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Exercise 4 (Dummit and Foote p. 187 #22). Let F' be a field, let n be a positive integer,
and let G be the group of upper triangular matrices in GL,, (F) (cf. Exercise 16, Section
2.1).

(a) Prove that G is the semidirect product U x D where U is the set of upper triangular
matrices with 1’s down the diagonal and D is the set of diagonal matrices in GL,,(F).

(b) Let n = 2. Recall that U = F and D = F* x F* (cf. Exercise 11 in Section
3.1). Describe the homomorphism from D into Aut(U) explicitly in terms of these

isomorphisms (i.e., show how each element of F'* x F'* acts as an automorphism on

Proof.
(a) We proceed towards an application of Theorem 12 in Section 5.5, requiring therefore
3 subclaims. We begin by showing that part (1) of the Theorem holds.

Subclaim 4.1.

U is a normal subgroup of G.

Proof of subclaim 4.1.

Let w € U and g € G be given arbitrarily, and let I denote the n x n identity
matrix, that is, the identity element of GG. Because u has 1’s down the diagonal by
construction, u — I is a strictly upper triangular matrix. Let ut = u — I. Then,
because the product of an upper triangular matrix with a strictly upper triangular
matrix is strictly upper triangular by results from linear algebra, this implies that
gutg~! is strictly upper triangular and hence I + gug~! is an element of U. Thus

gug~t =gl +ut)g™"
=glg~ ' +gutg”
=T+gutgtel.

1

Since u € U and g € G were arbitrary, this shows that U is a normal subgroup of G,
completing subclaim 4.1. O

Now we show that part (2) of the Theorem holds.

Subclaim 4.2.

Let I denote the n x n identity matrix, that is, the identity element of G. Then
UnD={I}.

Proof of subclaim 4.2.

Suppose A € UN D. Since A € D, A’s non-diagonal entries are 0. Then, since
A € U, A’s diagonal entries are 1. Therefore A = I, proving subclaim 4.2. O
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Exercise 4

Subclaims 4.1 and 4.2, along with Theorem 12 in Section 5.5, imply that U x D is
isomorphic to the subgroup UD of G. To complete the proof, we prove the following third

subclaim.

Subclaim 4.3.

G =UD.

Proof of subclaim 4.3.

Let g € G be given arbitrarily. For ¢ € {1,2,...,n}, define d; = g;;, the ith diagonal
element of g. Note that, because g is triangular, det(g) = []}'_, d;, and since g €
GL,(F), det(g) # 0. This implies that d; # 0 for all ¢ € {1,2,...,n}. Then, let
u € U be defined as

0 if i > j
uij = 1 lf’L :j
gmd}l ifi < 7.

Then w is upper triangular and has 1s along the diagonal, so v € U. Furthermore,
define d = (d;0;;), the matrix whose diagonal elements are the same as those of g
and whose non-diagonal elements are 0. Then d € D, and

1 giody" gusds’ Gindy d 0 0 -+ 0
0 1 g23dy Gondy " 0 do 0 -+ 0
ud= 10 0 1 g3nd; ! 0 0 ds 0

0 0 0 1 0O 0 0 --- 0
di gi2dy'dy  gi3dy'ds gindy, tdy,
0 ds go3dy ' d3 gondy, td,

= 0 0 d3 gSndledn
0 0 0 dn
g1 gi2 913 Jin
0 g2 g23 Gon

= 0 0 933 gsn
0 0 0 Gnn

=9,

and thus g € UD. Since this is true for an arbitrary element of G, it is true for all
elements of G, and therefore G C UD. Since UD C G, this proves that G = UD,
completing subclaim 4.3. O

10



Noah Prentice HW 4 Exercise 4

By combining the results of subclaims 4.1, 4.2, and 4.3, Theorem 12 in Section 5.5 implies
that G 2 U x D, proving the result.

(b) Recall that the homomorphism ¢ from D into Aut(U) that yields the semidirect
product from part (a) maps each element d of D to the conjugation map v4 € Aut(U).
Thus, in terms of the isomorphisms v : D — F* x F* and 6 : U — F in Exercise 11 given

by
1
a 0 »g(a,b), ¢ »i>c7
0 b 0 1

the action of (a,b) € F* x F* on c € F is given by (a,b) -c = 9(@(¢‘1((a, b))) (9‘1(0)))
—1

In particular, since the action ¢ in G is given by

A6 )66 )6
o

This means that (a,b) € F* x F* acts on ¢ € F by (a,b) - ¢ = §c. O

11
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Exercise 5 (Dummit and Foote p. 187 #23). Let K and L be groups, let n be a positive
integer, let p : K — S;,, be a homomorphism and let H be the direct product of n copies
of L. In Exercise 8 of Section 1 an injective homomorphism % from S,, into Aut(H) was
constructed by letting the elements of S, permute the n factors of H. The composition
1 o p is a homomorphism from G into Aut(H). The wreath product of L by K is the
semidirect product H x K with respect to this homomorphism and is denoted by L K
(this wreath product depends on the choice of permutation representation p of K—if none
is given explicitly, p is assumed to be the left regular representation of K).

(a) Assume K and L are finite groups and p is the left regular representation for K. Find
|L? K| in terms of |K| and |L|.

(b) Let p be a prime, let K = L = Z,,, and let p be the left regular representation of K.
Prove that Z,! Z, is a non-abelian group of order pP™! and is isomorphic to a Sylow
p-subgroup of Sp2. [The p copies of Z, whose direct product makes up H may be
represented by p disjoint p-cycles; these are cyclically permuted by K|

Proof.

(a) By definition, |L ! K| = |H x K|. Then, by Theorem 10 in Section 5.5, |H x K| =
|H|-|K|. Because p is the left regular representation for K, the codomain of p is S|x|. Thus
n = |K|, and so

H=LxLx-xL=L¥.

|K| times

Since |A™| = |A|™ for any set A and any positive integer m, we therefore have
LK =L K],

completing the proof of part (a).

(b) By part (a), we have that |Z,1Z,| = p? -p = pP*1, and so Z,1Z, is a group of order
pPTL. Furthermore, since 9 o p is not the trivial homomorphism, Proposition 11 in Section
5.5 implies that K is not a normal subgroup of H Xy, K, and therefore H X, K is not
abelian.

Note.

For the sake of clarity, we will use commas to separate the elements of cycles in S,,.

Definition.

1. Fori e {1,2,...,p}, let h; be the cycle in S,2 defined as
hi:=((i—1p+1, i—1p+2,..., ip).
2. Fori € {1,2,...,p}, let 7; be the cycle in Sy2 defined as

7= (i, p+i,..., P> —p+i).

12
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3. Define the element 7 of S, by

H:=(h;:i€{1,2,...,p}).

We now prove our first subclaim.

Subclaim 5.1.

H =7} is isomorphic to H.

Proof of subclaim 5.1.

For each ¢ € {1,2,...,p}, let e; € H be the element of ZP with a one in the ith
component and zeroes everywhere else. Note that H is generated by {e; : i €
{1,2,...,p}}. Let 1 : H — H be defined over {e; : i € {1,2,...,p}} as e; = h;
and extended “linearly” to H: given any element of H, v = (v1,vs,...,v,) with each
v; € Ly for alli € {1,2,...,p}, define

p
or(v) = [ .
=1

We will show that ¢; is an isomorphism:

e Homomorphism. Suppose v and w are elements of H. Then we can write

v=(v1,...,0p), b= (wi,...,wp)
with v;, w; € Z,, for each ¢ € {1,...,p}. Now we make several notes:

1. For all distinct 4, j € {1,...,p}, h; and h; are disjoint cycles, and therefore

hih; = hjh;.
2. For each i € {1,...,p}, the division algorithm guarantees that v; + w; =
¢;p + r; for some r; € {0,...,p — 1} = Z, and some positive integer g;.

3. Foralli € {1,...,p}, h; is a cycle of length p and thus hY = (1).

13



Noah Prentice HW 4 Exercise 5

We therefore have

hS]
=
s

p1(v)p1(w) = [

1]

Vi Fw;

K2

-~
Il

|
VE”@

~
Il
R

by note 1

hqlerm
K3

Il
.Eﬁ

©
I
—

by note 2

I
.mﬁ

«
Il
-

LIRS

(1)%h* by note 3

|

Q
Il
-

|
VE“’

@
Il
_

T4
hi

=¢1(v+w) by note 2.
Thus ¢7 is a homomorphism.

e Bijection. Note that ¢; is surjective onto the generators of H, {h; : i €
{1,2,...,p}}, as h; is mapped to by e; for each 7 € {1,2,...,p}. Then, since
this holds for all generators H, ¢; is surjective onto all of H. Furthermore,
|H| = |H| = pP obviously, and so every surjection from H to H is a bijection.
Thus ¢ is a bijection.

This shows that ¢; is an isomorphism, proving subclaim 1. O

Note also that K is a cyclic group generated by 7 which has order p. Thus, by Theorem
4 in Section 2.2, @ : K — K defined as ¢o(n) = 7" is an isomorphism, and hence K = K.
Now we make and prove our second subclalm.

Subclaim 5.2.

Let v, : H — H be defined as v,(h) = 7ht~!. Then ~, is an automorphism.

Proof of subclaim 5.2.

Consider first an arbitrary generator h;, i € {1,2,...,p}, of H. Then, by a proposi-
tion proved in a lecture,

vr(hi) = Thyr !
=7((i—1)p+1, (i—p+2,..., ip)7 "
= (T((Z —p+1), 7(i—1)p+2),..., T(ip)).

14
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One easily verifies that the definition of
P
T = H(Zv p+2aap2_p+7/)
i=1

implies that 7(n) = n + p, where this is reduced modulo p? if necessary. Therefore
Thyt ' =(1, 2,..., p) = hy and, for i € {1,2,...,p},

1

Thi’ri = (Zp+1, Zp+277 (Z+1)p) :hi+1~

In other words, reading the indices modulo p, v (hi) = hit1. B
Now consider an arbitrary element a of H. Because the generators of H commute

with one-another, there exist non-negative integers a1, ..., a, such that
P
_ a;
i=1

and therefore

V(o) =7 (H h?") T
i=1

= H(’Thi’ril)ai
z:pl
H hig1®

=1

where again the indices are read modulo p. This proves that v, (H) C H.

Recall then that -, is a homomorphism. Furthermore, it is surjective onto {h; :
i€{1,2,...,p}}, as h; is mapped to by h;_1 (again reading the indices modulo p).
Since the h;’s generate H, then, -, is surjective onto all of H. Since every surjection
from a finite set to itself is a bijection, this implies that ~;, is an isomorphism from
H to H, and hence it is an automorphism. This concludes the proof of subclaim 2.0

Now, since K = (7), we use the result of subclaim 2 to make the following definition:

Definition.

Let I' : K — Aut(H) be defined as

L(r"™) =42 = 7n, for all integers n.

T

Note that, since K is generated by 7, this defines I" for every element of K.

We use this to make and prove our third subclaim.

15
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Subclaim 5.3.

I" is a homomorphism.

Proof of subclaim 5.3.

Given arbitrary integers n and m,

F(T” . Tm) — F(Tn+nz)
— ,yner
r
=% o

=T(") o T'(r™).

Since K = (), this proves that I is a homomorphism, completing subclaim 3.  [J

Because I' : K — Aut(H) is a homomorphism by subclaim 5.3, H xp K is defined. We
use this to make and prove the following fourth subclaim:

Subclaim 5.4.

H %0, K is isomorphic to Hxr K.

Proof of subclaim 5.4.

Let ® : H Xyorno K — H xp K be given by ®((h,k)) = (¢1(h), p1(k)) for every
h € H, k € K. First note that

e1(v+ ¥ op(n)(w)) = @1 ((v1 + win, .., Vp + wWp—n))

p
o VitWi—n
= I I h;

=1

() (1)

P
=p1(v) - H hi, by re-indexing
i=1

P
=p1(v) - | | (yon(Ry))™" by results in subclaim 2
i=1

16
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where the indices are again read modulo p. Therefore
@((v,n) + (w,m)) = <I>((v +¢op(n)(w),n+ m))
= (e1(v+v 0 pM)(W)), p2(n+m))
= (#1(0) - Tlp2(m)(1 (), @2(n) - 2(m) )

(#1(v),2(n)) - (p1(w), p2(m))
®((v,n)) - ®((w,m)).
This shows that ® is a homomorphism. Furthermore, it is a bijection because ¢ and

o are isomorphisms. This proves that ® is an isomorphism, completing subclaim 4.
O

To end the proof, we make and prove the following fifth subclaim:

Subclaim 5.5.

H xr K is isomorphic to HK.

Proof of subclaim 5.5.

Let 0 : H xr K — HK be given by (h, k) — h-k. Then we prove several facts about
d0:

e Homomorphism. Let a,b € H and k,¢ € K be given arbitrarily. Then, because
K = (1), there exist integers ny and n, such that k = 7™ and ¢ = 7. Thus
L(k)(b) -k =T(7"*)(b) - k
= Yrre (b) - K
= (T”k b 7'7”*‘) -k

=7}

Therefore

This proves that § is a homomorphism.

e Injective. Suppose (h, k) € ker(d). Then hk = (1). This implies that h = k~! €
K, and thus, under the canonical inclusion of H and K in H xp K, we have that
(h,eg) = (e, k™), and hence h = ez and k = eg. Thus ker(6) = {eg,. &},
which, because § is a homomorphism, implies that J is injective.

17
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e Surjective. Let hk € HK be given arbitrarily. Then &((h, k)) = hk, and so J is
surjective.

Since ¢ is therefore a bijective homomorphism, it is an isomorphism by definition,
proving subclaim 5.5. O

Combining the results of subclaims 5.4 and 5.5, this yields that H Xo, K = HK < Sp2.
Since the order of H X0, K was shown earlier to be pP™!, and since the exponent of p in
the prime factorization of p?! = |Sp2| is p + 1, this shows that H Xy., K is isomorphic to a
Sylow p-subgroup of S, proving the result. O

18
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Exercise 6 (Dummit and Foote p. 187 #25). Let H(F,) be the Heisenberg group over the
finite field F, = Z/pZ (cf. Exercise 20 in Section 4). Prove that H(F2) & Ds, and that
H(F,) has exponent p and is isomorphic to the first non-abelian group in Example 7.

Proof.
Subclaim 6.1.
H(FF3) is isomorphic to Dg.
Proof of subclaim 6.1.
Let R, S € H(F3) be defined as
1 1 1 0
R=1]0 1 1|, S=1]0 1 0
0 0 0 0 1
Then
2 2
1 1 1 1 1 1
Rt=f0 1 1| -]0o 1 1
0 0 1 0 0 1
1 0 1 1 0 1
=10 1 0)-]1]0 1 O
0 0 1 0 0 1
=1
2
1 1 0
=10 1 0
0 01
= G2

19
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Furthermore,
1 1 1 110
RS=10 1 1 010
0 0 1 0 0 1
1 0 1
=10 1 1
0 0 1
1 10 1 10
=10 1 0 0 1 1
0 0 1 0 0 1
= SR~

So, since we already have exhibited 5 elements of H(Fz) that are in (R, S) (I, R, S,
RS, and R~1), Lagrange’s Theorem implies that H(Fy) = (R, S), where R* = S? =T
and RS = SR™!. Thus, because Dg has the defining representation Dg = (r,s |
r* = 8% = 1,7s = sr~1), the function ¢ : {R,S} — Dg defined by ¢(R) = r and
©(S) = s has a well-defined “linear” extension to all of H(Fs), and this extension
will be a homomorphism by the structural relations we have shown H(Fs) to have.
Additionally, ¢ : Dg — H(F3) defined as ¢(r) = R and ¢(s) = S has a similarly
well-defined linear extension, and clearly 1) o ¢ = @ 09 = id. Thus ¢ is invertible,
and hence ¢ is an isomorphism from H(FF3) to Dg, proving the result. O

Subclaim 6.2.

H(F,) has exponent p

Proof of subclaim 6.2.

By work done in a previous homework, we found that for all positive integers n,

" 1 n-a %a'c'n275a~c~n+b'n
0

1

_ 0 o

1
0
0

= )

Clearly, if n = p, the right hand side is the identity matrix, and so the exponent of
H(F,) is at most p. Furthermore, results from a previous homework showed that
|H(F,)| = p?, and so Cauchy’s Theorem implies that H(F,) has an element of order
p. This implies that the exponent of p is at least p. Combining these two facts yields
that H(FF,) has exponent p, proving subclaim 6.2. O

We have thus proved 2 of the 3 claims. It remains to be shown that H(IF,) is isomorphic
to the first nonabelian group in Example 7. We begin this journey with a definition.

20
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Definition.

Define A, B, and X in H(F,) by

110 10 1 10 0
A=]01 0|, B=|0o 1 0], X:=]0 1 p—1
00 1 00 1 00 1

Then we make and prove several computational facts, combined into a single subclaim

Subclaim 6.3.

(i) A? = BP = XP = [, where I denotes the 3 x 3 identity matrix.
(i) AB = BA.
)
)

(iii) XAX~! = AB.

(iv) XBX~!=B.

Proof of subclaim 6.3.

(i) Recall that, as mentioned in Equation 1 in subclaim 6.2

b " 1 n-a %a'Conzf%a~c~n+b'n
c =10 1 cn
1 0 0 1

1
0 VnelZr.
0

S = 2

So, when n = p, clearly this is the identity matrix. This is in particular true for A
B, and X, proving (i).

(ii) By computation,

1 10 1 01 1 11 1 01 1 10
AB=|(0 1 0 01 0y=1]010=]0120 0 1 0]=BA
0 0 1 0 0 1 0 0 1 0 01 0 01

This proves (ii).
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(iii) By computation,
1 1 0 0 0
XAX =101 p—1|f0o 1 1
00 1 0 0 1
1 1 1
=0 1 0
0 0 1
1 1 0 0 1
=0 1 0 010
0 0 1 0 0 1
= AB
This proves (iii).
(iv) By computation,
1 0 1 1 0 0 1 01
XBX'=(01 p-1|]0 1 p-1|=(0 1 0|=B
0 0 1 00 1 0 0 1
This proves (iv), completing subclaim 6.3. O

The relations shown in subclaim 6.3 show that, by a similar argument to the proof of
subclaim 6.1,

(A,B,X) = (a,b,z | a? =W = 2P = 1,ab = ba, rax™ ' = ab,xbz~" = b)

which is the first non-abelian group in Example 7. We therefore end by making and proving
our final subclaim.

Subclaim 6.4.

(A,B,X) = H(F,).

Proof of subclaim 6.4.

Note that, for all positive integers n and m, we have by Equation 1 in subclaim 6.2
that

m
0

1
A"B™ =10
0

o~ 3
= o O
S = O

1 1 n
0 =10 1
0 1 0 0 1

So, if 1 < n,m < p, then these matrices are distinct: if A" B™ = A" B"2 for
1 < ny,mi,ng, me < p, then n; = ny and m; = mo. Since X is distinct also, we
have that (A, B, X) contains at least p> + 1 elements of H(F,). Thus, by Lagrange’s

22
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Theorem, since |H(F,)| = p?, the order of (A, B, X) is p®, and thus (4, B, X)
H(F,), proving subclaim 6.4.

O

Combining subclaim 6.4 with the discussion following subclaim 6.3, we achieve the result.

23
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