
MTH 654-2024 Homework C2. Noah Prentice
Date: January 12, 2025
Prof. M. Peszynska

1 Introduction.
In this project, we consider optimal control problems under PDE constraints. In particular,
we focus on boundary and distributed control problems constrained by the Poisson equation.
The work was guided by [1] and [2].

2 An uncoupled boundary control problem.
The first part of the project involved solving the following problem:

Problem 2.1 – 1D uncoupled boundary control problem

Suppose we have a 1-dimensional rod represented by the interval [0, 1]. We will control
the heat on the left side of the rod by u ∈ R and fix the rod’s temperature at the right
endpoint to be 0. We would like the steady-state temperature v of each point x of the
rod to be as close to 1 as possible. From physics, we know v must satisfy −∆v = 0 in
Ω = (0, 1), which motivates solving the following constrained optimization problem:

minimize
u,v

J(v, u) :=

∫
Ω

(v(x)− 1)2 dx+
λ

2
u2 (1a)

subject to −∆v = 0 on Ω, (1b)
v(0) = u, v(1) = 0 (1c)
u ∈ R. (1d)

Let’s introduce some typical terminology for constrained optimization problems of this
form: u is the control, v is the state, the function J being minimized in (1a) is the
objective, 0 ≤ λ � 1 is a fixed regularization parameter, (1b)-(1d) are called the
constraints, and R in (1d) defines the set of admissible controls.

We will solve this problem two ways. First, we solve the problem analytically using the
fact that the control u comes from a finite-dimensional vector space. Then, we solve the
problem numerically using a method that is applied to higher-dimensional problems, where
the control is generally taken to be a function u ∈ L2(∂Ω).

2.1 Analytic solution.
As posed in (1), the objective is a function of two variables, the control u and the state v.
From the theory of differential equations, though, we know that each u ∈ R gives rise to
a unique solution v that satisfies the constraints of the problem. So, we begin by defining

1

the solution operator, S : R → L2(Ω), such that u 7→ v. This means we may re-frame the
problem as

minimize
u

j(u) :=

∫
Ω

(S(u)(x)− 1)2 dx+
λ

2
u2 (2a)

subject to u ∈ R. (2b)

To solve this problem, we compute a formula for the solution operator. From the theory of
differential equations, if v solves (1b), then v(x) = ax + b for some a, b ∈ R. Inputting the
boundary conditions in (1c) therefore yields the formula v(x) = u(1− x), so that S(u)(x) =
u(1− x) is the solution operator we wanted. Thus the modified objective becomes

j(u) :=

∫
Ω

(S(u)(x)− 1)2 dx+
λ

2
u2

=

∫ 1

0

(u(1− x)− 1)2 dx+
λ

2
u2

= 1− u+
1

3
u2 +

λ

2
u2.

We therefore solve j′(u) = 0 and take λ → 0 to get u = 3/2.

2.2 Numerical solution using scipy.optimize.
To solve the problem numerically, we follow an approach that applies even when u comes
from an infinite-dimensional function space as is the case for higher dimensions. We begin
by discretizing everything in the problem: given M ∈ N, we partition Ω into a grid with
boundaries 0 = x1/2 < x3/2 < · · · < xM+1/2 = 1, centers xk := 1/2 · (xk−1/2 + xk+1/2), and
widths hk := xk+1/2 − xk−1/2. Then define ωk := [xk−1/2, xk+1/2], and approximate v by
vh =

∑M
k=1 vk1ωk

. Under this discretization, we reformulate the objective and constraints to
get

minimize
u,vh

Jh(vh, u) :=
1

2

∫
Ω

(vh(x)− 1)2 dx+
λ

2
u2 (3a)

subject to 1

h2
k

(−vk−1 + 2vk − vk+1) = 0 for k = 2, . . . ,M − 1, (3b)

v1 = u, vm = 0 (3c)
u ∈ R. (1d)

where, in general, the differential equation constraint in (3b) comes from a discrete version
of the Laplacian operator ∆. To solve this problem using scipy.optimize, we simplify the
objective to get

Jh(vh, u) =
1

2

M∑
k=1

hk · (vk − 1)2 +
λ

2
v21

2

and we rewrite the constraints in matrix-vector form as
0 0 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...
0 0 0 0 · · · 1

 ·

v1
v2
v3
...
vk

 =

0
0
0
...
0

 .

Then we use scipy.minimize on a uniform grid.

7 M = 100
8 h = 1 / M
9 regularization_lambda = 0.01

10

11

12 def finite_dimensional_objective(y: np.ndarray) -> float:
13 average_as_vector = np.ones(y.shape)
14 objective = 0.5 * h * np.sum(
15 np.square(y - average_as_vector)
16) + 0.5 * regularization_lambda * math.pow(y[0], 2)
17 return objective
18

19

20 def build_constraint_matrix() -> sparse.lil_array:
21 constraint_matrix = sparse.lil_array((M, M))
22 constraint_matrix[-1, -1] = 1
23 for i in range(1, M - 1):
24 constraint_matrix[i, i - 1] = -1
25 constraint_matrix[i, i] = 2
26 constraint_matrix[i, i + 1] = -1
27 return sparse.csr_matrix(constraint_matrix)
28

29

30 def build_constraint_vector() -> np.ndarray:
31 return np.zeros(M)
32

33

34 constraint = opt.LinearConstraint(
35 build_constraint_matrix(),
36 build_constraint_vector(),
37 build_constraint_vector(),
38)
39

40 result = opt.minimize(
41 finite_dimensional_objective,
42 np.ones(M),
43 method="trust-constr",
44 constraints=constraint,
45)

3

This results in the numerical solution for M = 100 plotted in figure 1, as well as the error
for finer and finer grids plotted in figure 2.

Figure 1: Numerical approximation of v = S(u) from scipy.optimize

Figure 2: L2 grid-norm error for scipy.optimize

Interestingly, we do not see that the error → 0 as h → 0 as we would expect.

3 An uncoupled distributed control problem.
The next problem involved a similar problem where the control is distributed instead of on
the boundary:

4

Problem 3.1 – 1D uncoupled distributed control problem.

As before, we have a 1-dimensional rod represented by the interval [0, 1], but we fix its
temperature to be 0 at both ends and instead control the heat sources in the interior
of the rod. Thus, where before the control u was the temperature of the rod on the left
endpoint, now u ∈ L2(Ω) defines the heat sources. We still want the temperature of
the rod to be as close to 1, pointwise, as possible. This leads the following constrained
optimization problem:

minimize
u,v

J(v, u) :=
1

2

∫
Ω

(v(x)− 1)2 dx+
λ

2

∫
Ω

u(x)2 dx (4a)

subject to −∆v = u on Ω, (4b)
v(0) = v(1) = 0 (4c)
u ∈ L2(Ω). (4d)
a ≤ u ≤ b a.e. in Ω (4e)

Note that the additional constraint on u in (4e) is a typical one and called a box
constraint.

Here we will not solve the problem analytically, but rather numerically via an implemen-
tation of the active set algorithm described in [2].

As a precursor to the algorithm, we start by discretizing the control, u. As above, we
partition the domain into subdomains ωk and approximate u by a piecewise constant function
uh =

∑M
k=1 uk1ωk

, u1, . . . , uM ∈ R. We then re-define the solution operator S : L2(Ω) →
L2(Ω) that maps the control u to the unique solution v to the constraints in (4b)-(4c).

The main difficulty in implementing the algorithm involves finding a discretized version
Sh : RM → L2(ω) of the solution operator S : L2(Ω) → L2(Ω). We do this by computing
vk := S(1ωk

) for each k = 1, . . . ,M , that is, we compute the unique solution vk to the
boundary value problem

−∆vk = 1ωk
on Ω, (5a)

vk(0) = vk(1) = 0. (4c)

We could very well numerically approximate the solution to this problem using the ELLIPTIC1d
code used in part (a) of the course, but we can also find an analytic solution without too
much difficulty. In 1D, (5a) is equivalent to −v′′ = 1ωk

, so we begin by finding a second
antiderivative for 1ωk

. Define f : [0, 1] → R by

f(x) =

∫ x

0

1ωk
(t) dt+ C, C ∈ R

=

C if x < xk−1/2

C + x− xk−1/2 if x ∈ ωk

C + hk if x > xk+1/2

5

so that f ′ = 1ωk
by the fundamental theorem of calculus. Then define g : [0, 1] → R by

g(x) =

∫ x

0

f(t) dt+D, D ∈ R

=

Cx+D if x < xk−1/2

Cx+D + x2/2 + x2
k−1/2/2− x · xk−1/2 if x ∈ ωk

Cx+D + hk(x− xk) if x > xk+1/2

so that g′ = f by the fundamental theorem of calculus. Thus g′′ = 1ωk
, so v = −g satisfies

(5a). Plugging in boundary conditions yields D = 0, C = −hk(1− xk).
With this formula for vk, we can define the discretized version of the solution operator

Sh : RM → L2(Ω) by Sh(u⃗) =
∑M

k=1 ukvk. We also need the adjoint S∗
h : L2(Ω) → Rn of this

operator, which, as described on p. 100 in [2], is given by

(
S∗
h(y)

)
k
=

∫
Ω

y · vk dx.

We will use the quad integration function from scipy.integrate to compute this integral
as necessary.

Now, as in [2], the active set algorithm for this problem is as follows:

D0 Choose arbitrary initial vectors u⃗0, p⃗0 ∈ RM .

D1 Given u⃗n and p⃗n, determine the new finite active sets A+
n+1 and A−

n+1 as well as the
finite inactive set In+1:

A+
n+1 :=

{
k ∈ {1, . . . ,M} : −pn,k

λ
> b

}
A−

n+1 :=
{
k ∈ {1, . . . ,M} : −pn,k

λ
< a

}
In+1 := {1, . . . ,M} \

(
A+

n+1 ∪ A−
n+1

)
.

D2 Compute p⃗n+1 := S∗
h (Shu⃗n − 1Ω) and

un+1,k :=

a if k ∈ A−

n+1

−pn+1,k

λ
if k ∈ In+1

bk if k ∈ A+
n+1.

Proceed to D1 for the next iteration step.

The iteration is halted once A+
n+1 = A+

n and A−
n+1 = A−

n . This algorithm is implemented as
follows:

6

43 def analytic_v_k(x: float, k: int = 0) -> float:
44 C = -cell_widths[k] * (1 - cell_centers[k])
45 if x <= cell_boundaries[k]:
46 return -C * x
47 elif cell_boundaries[k] <= x <= cell_boundaries[k + 1]:
48 return -(
49 0.5 * math.pow(x, 2)
50 - x * cell_boundaries[k]
51 + 0.5 * math.pow(cell_boundaries[k], 2)
52 + C * x
53)
54 return -(cell_widths[k] * (x - cell_centers[k]) + C * x)
55

56

57 def integral_of_v_k(k: int) -> float:
58 return quad(analytic_v_k, 0, 1, args=(k))[0]
59

60

61 integrals_of_v_k = np.array([integral_of_v_k(i) for i in range(M)])
62

63 initial_u = np.ones(M)
64 initial_p = np.ones(M)
65 p, u = initial_p, initial_u
66

67 (
68 previous_positive_active_set,
69 previous_negative_active_set,
70 previous_inactive_set,
71 positive_active_set,
72 negative_active_set,
73 inactive_set,
74) = (set(), set(), set(), set(), set(), set())
75 n = 0
76 while n < 1000:
77 n += 1
78 print("iteration " + str(n))
79

80 (
81 previous_positive_active_set,
82 previous_negative_active_set,
83 previous_inactive_set,
84) = (positive_active_set, negative_active_set, inactive_set)
85 positive_active_set, negative_active_set, inactive_set = set(), set()

, set()
86

87 for k in range(M):
88 if -p[k] / regularization_lambda > b[k]:
89 positive_active_set.add(k)
90 elif -p[k] / regularization_lambda < a[k]:
91 negative_active_set.add(k)

7

92 else:
93 inactive_set.add(k)
94

95 p = np.zeros(M)
96 for k in range(M):
97 for j in range(M):
98 p[k] += u[j] * integrals_of_v_k[j]
99 p[k] -= integrals_of_v_k[k]

100

101 for k in positive_active_set:
102 u[k] = a[k]
103 for k in negative_active_set:
104 u[k] = b[k]
105 for k in inactive_set:
106 u[k] = -p[k] / regularization_lambda
107

108 if (
109 positive_active_set == previous_positive_active_set
110 and negative_active_set == previous_negative_active_set
111):
112 print("Found u: " + str(u))
113 break

For a ≡ 0 and b ≡ 10, this produced the result of uk = 10 for all k = 1, . . . ,M , and thus
v(x) = −5x(x− 1).

4 Future work.
For C3, I would like to work on a coupled problem. For instance, if Ω1 = [0, 1/2], Ω2 =
[1/2, 1], and v1 ∈ L2(Ω1), v2 ∈ L2(Ω2), we can try to control u ∈ R such that v2 is as close
to 1, pointwise, as possible, and such that

−∆vi = 0, v1(0) = u, v1(1/2) = v2(1/2), v′1(1/2) = v′2(1/2), v2(1) = 0.

Other future directions which I may not have time for would (1) include implementing my
own algorithm for the boundary control problems or (2) solving a 2D distributed control
problem.

8

References
[1] M. Ulbrich, Semismooth Newton methods for variational inequalities and constrained

optimization problems in function spaces, ser. MOS-SIAM Series on Optimization.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA;
Mathematical Optimization Society, Philadelphia, PA, 2011, vol. 11. [Online]. Available:
https://doi.org/10.1137/1.9781611970692

[2] P. Philip, “Optimal control of partial differential equations,” 2013. [Online].
Available: https://www.math.lmu.de/~philip/publications/lectureNotes/philipPeter_
OptimalControlOfPDE.pdf

9

https://doi.org/10.1137/1.9781611970692
https://www.math.lmu.de/~philip/publications/lectureNotes/philipPeter_OptimalControlOfPDE.pdf
https://www.math.lmu.de/~philip/publications/lectureNotes/philipPeter_OptimalControlOfPDE.pdf

	Introduction.
	An uncoupled boundary control problem.
	Analytic solution.
	Numerical solution using scipy.optimize.

	An uncoupled distributed control problem.
	Future work.

